
Design and Verification of a Counter using HARPO
Programming Language

Inaam Ahmed, Theodore S. Norvell, and Ramachandran Venkatesan
Dept. Electrical and Computer Engineering
Faculty of Engineering and Applied Science

Memorial University of Newfoundland & Labrador
inaama@mun.ca, theo@mun.ca, venky@mun.ca

Abstract—HARPO (HARdware Parallel Objects) is a concur-
rent programming language designed to run on coarse-grained
reconfigurable computing architectures, Field Programmable
Gate Arrays (FPGAs), and Graphical Processing Units (GPUs).
The HARPO verifier translates programs into Boogie for veri-
fication. Writing specifications and annotations in the HARPO
language for a hardware design shortens the development time
and bridges the gap between high-level programming languages
and hardware description languages. In this paper, the design
of an integer “Counter” is verified using HARPO Verifier by
translating the program into Boogie. Various counting scenarios
containing explicit transfer of permissions have been verified
using HARPO verifier.

HARPO Verifier, FPGA, Counter, VHDL

I. I NTRODUCTION

HARPO project aims to target variety of coarse-grained
reconfigurable hardware, such as Field Programmable Gate
Arrays (FPGAs); Graphical Processing Units (GPU), and
modern microprocessors [1]–[3].

Testing is not sufficient to ensure the correctness of pro-
grams and this motivates us to find methods of program
analysis verification [7], [8]. The design of HARPO allows
programs to be annotated for verification [4]. The HARPO
Verifier has been developed to verify the correctness of
sequential and concurrent HARPO programs using the Boogie
verifier [5] under the covers. Concurrent programs are verified
using the explicit transfer of permissions methodology [6].

In this paper, the design and verification of a simple
hardware component, namely an integercounter is reported.
A genericcounterclass is written in HARPO programming
language using annotations for its verification. Fig 1 shows the
data flow diagram of the HARPO Verifier. The HARPO Ver-
ifier shares the same front-end with other HARPO backends
[9]. The parsing phase creates an abstract syntax tree (AST)
from the source code. All syntactical errors are reported to
an Error Recorder. Later the checker phase performs name
resolution, type creation, and type-casting. Again all semantic
errors are reported to Error Recorder. An updated AST
from checking phase goes to code generator which performs
translation of HARPO code into Boogie [9], [10]. The code

Acknowledgement: The research was supported in parts by funds from
National Science and Engineering Research Council (NSERC) of Canada.

Fig. 1. Data Flow of HARPO Program Verification

generator traverses the AST and generates Boogie code. The
Boogie code serves as an intermediate representation (IR)
of the HARPO code for generating Verification Conditions
(VCs). Boogie verifier generates VC from standard axioms
and functions embedded in customized IR. Boogie verifier
generates uses theZ3 SMT solver [11] to attempt to prove the
VCs. The Error Report processor takes all verification errors
and feeds them to Error Recorder after mapping verification
errors to their corresponding HARPO source code.

The remainder of this paper is organized as follows: Section
II describes some of the notable verifiers using Boogie
language as their intermediate representation. Section III
describes thecounter design problem. Section IV describes
the abstract syntax trees ofcounterclass. Section V describes
checking phase of verification. Section VI describes code
generator. Section VII briefly explains actions of the Boogie
verifier. Section VIII explains the error report processor.
Section IX has conclusions with suggested future work.

II. RELATED WORK

Numerous static verifiers have been developed in the
past few decades [12]–[22]. These verifiers primarily use
verification conditions generation at the heart of static
verification process. Boogie is a verifier [5] for the Boogie
Intermediate Verification Language (IVL) that is used
for intermediate representation of several static checking
verifiers. The Dafny programming language was developed
for verification in mind and being used as high-level
programming language for developing verified programs
and generate .NET executables [13]. Chalice is one of
the first static verifiers used the idea of permissions to
verify concurrent programs [14]. VCC was developed as
a verification layer on top of C for verifying concurrent
C programs [16]. Verve is a complete operating system
verified by using Boogie as verification conditions generator
[17]. HAVOC is heap-aware verifier designed to efficiently
verify the correctness of C programs using heap data
structure with less effort [19]. C# language programs are
verified using Spec# as an easily adoptable technology [20].
Eiffle uses AutoProof verifier to address frame problem by
auto-generating frame conditions [20]. ESC/Java is a static
checking using same staging strategy that other verifiers are
using; however ESC/Java does not use Boogie besides has
its own verification conditions generator [22].

III. “C OUNTER” D ESIGN

A HARPO program in Listing 1 has a class named
Counter. An integer type variable namedcount has been
initialized to ‘0’ and it can be assigned with in a range i.e.
{-2147483648,...,+2147483647}. Generally, the purpose of
this counting scenario is to increment the value of thecount
variable every time an event occurs.

The incrementprocedure is implemented by thread*t0* to
update thecount field. In HARPO, each thread and object
has, at each point in time, a certain amount of permission
on each location. The total permission at any time on one
location can not exceed 1.0. A thread needs 1.0 permission on
an object in order to write to it. Initially eachCounterobject
claims0.5permission on thecountfield and the class invariant
assertscount as readable1. The incrementprocedure takes
the 0.5 permission from the calling thread. The assignment
of count to count+1 is inside awith command. Thewith
command locks the object, and allows the thread to use the
locked object’s permission as defined in class invariant. Thus,
the assignment has an error; the total permission that the
thread can use can be shown to be greater than 0.5, but
can not be shown to be 1.0. Thread*t1* invokes increment
procedure and responsible to explicitly transfer the permission
mentioned intakes clause of incrementprocedure. In this

1Readable and writable are two different levels of access to a particular
location, these access levels are presented with amount of permissions they
possess on that location. For instance, full permission i.e.1.0 only allows
writability and any amount of permission between greater than0.0 and less
than1.0 is readability.

case,*t1* also does not claim any permission and unable
to provide required permission to*t0* . So this is a second
error which the verifier should detect and report.

1 (class Counter()
2 obj count: Int32 := 0
3 claim count@0.5
4 invariant canRead (count) /\ count >_ 0
5 proc increment()
6 takes count@0.5
7 pre count>_0
8 post count’>0
9 gives count@0.5

10 (thread (* t0 *)
11 (while (true) do
12 (accept increment()
13 (with this do
14 count := count+1;
15 with)
16 accept)
17 while)
18 thread)
19 (thread (* t1 *)
20 increment();
21 thread)
22 class)

Listing 1. CounterClass in HARPO Programming Language

IV. A BSTRACT SYNTAX TREES

The first phases of translation produce an abstract syntax
tree (AST) for the program to represent the essential inform
ation of the program. A simplified AST is shown in Listing
2.
[ClassDeclNd(

[ClaimNd[ClaimNd#0](
PermissionMapNd[PermMapNd#1](

[LocSetNd(NameExpNd(count) : loc{ Int32 })],
[FloatLiteralExpNd(0.5) : Real64])),

ClassInvNd[* inv * 0](
BinaryOpExpNd(AndOp,

CanReadOp(LocSetNd(NameExpNd(count) : loc{ Int32 })): loc{ Int32 },
ChainExpNd([GreaterOrEqualOp],

[FetchExpNd(NameExpNd(count) : loc{ Int32 }) : Int32 ,
IntLiteralExpNd(0) : Int32]): Bool)

MethodDeclNd(PublicAccess)
[PreCndNd(

ChainExpNd(
[GreaterOrEqualOp],
[FetchExpNd(NameExpNd(count) : loc{ Int32 }) : Int32 ,

IntLiteralExpNd(0) : Int32])
: Bool)]

[PostCndNd(/ * Conditional Expression * /)]
[GivesPerNd(

PermissionMapNd[PermMapNd#3](
[LocSetNd(NameExpNd(count) : loc{ Int32 })],
[FloatLiteralExpNd(0.5) : Real64]))]

[TakesPerNd(/ * Permission Map * /)]
ObjDeclNd[count](Ghost : false ,

NamedTypeNd(Int32) : loc{ Int32 },
ValueInitExpNd(IntLiteralExpNd(0) : Int32) : Int32),

ThreadDeclNd[t#0](WhileCmdNd(BooleanLiteralExpNd(true) : Bool ,
AcceptCmdNd([MethodImplementationDeclNd(increment,

WithCmdNd(ThisObjRef(this) : NONE,
AssignmentCmdNd([NameExpNd(count) : loc{ Int32 }],

[BinaryOpExpNd(AddOp,
FetchExpNd(NameExpNd(count) : loc{ Int32 }) : Int32 ,

IntLiteralExpNd(1) : Int32) : Int32]
)))])))]),]

Listing 2. A Simplified AST ofCounterClass in Listing 1

V. CHECKER

The checker phase of verification takes AST generated
from the parser and edit the AST considering the semantics of
HARPO language such as, linking names to their declaration,
creating and checking types, and inserting type conversions.
Listing 2 is completely checked AST and ready to be used

in the next phase. Each expression is annotated with its final
result type; blue words in Listing 2 are types created during
the checking phase. For instance, the assignment command
in the Counterclass uses a value that is ofInt32 type.

VI. CODE GENERATOR

Standard axioms and function are embedded in the start
of Boogie code. These axioms define the values integers and
reals can take, and types need to be used in customized code.
The framing problem is addressed at the code generation
phase [23], [24]. The code generator takes the AST and
converts the declaration into constants; it declares a constant
for each field defined in the HARPO code; it converts each
thread to Boogie procedures. The output generated by code
generation is not intended to faithfully encode the execution
of HARPO programs; this would be impossible, as BOOGIE
is a sequential language which HARPO is concurrent; rather,
our goal is to ensure that the generated Boogie code will
verify if and only if the HARPO code is error free. Boo-
gie language providesassertstatement to encode the proof
obligations from source language andassumestatement to
guarantee the properties provided by the source language such
as values of minimum and maximum values ofpermission
variable. While generating the code each line of Boogie code
is given line number, and error messages on specific guarded
statements are set. These line numbers are error messages
that help identify the location of errors in source file. For
assignment statement in Listing 1 intermediate representation
will generate the assertion:

129 : a s s e r t LockPermiss ion [Th is Counter , Counter .
coun t] + P e r m i s s i o n [Th is Counter , Counter . coun t
] == 1 . 0 ;

Listing 3. Guard Statement Taken From IR of Listing 1

The permission of the thread and theCounter object are
summed and checked for equality to 1 in order to check
whether the thread has access to sufficient permission to
write the location. It can be inferred that the thread’s own
permission is 0.5. However all that can be inferred about the
permission belonging to the locked object is that it is greater
than 0. Thus the total permission is not known to be 1.0
and this assert command will result in an error. If the object
invariant were changed to state that the object’s permission
is 0.5, this assertion would verify.

VII. B OOGIE VERIFIER

The Boogie verifier is a static verifier intended to generate
verification conditions and check them usingZ3. Z3 checks
the correctness of the VCs and reports back the results in an
error report. For Listing 1, HARPO verifier, gets the error
report from Boogie verifier in Listing 4. The Boogie verifier
says the assertion online:129 might not hold. This assertion
given in Listing 3 asserts the total amount of locked object
permission, and the permission of current thread is running
on is equal to 1.

input(129,25): Error BP5001: This assertion
might not hold.

Execution trace:
input(99,5): anon0
input(99,5): anon4_LoopHead
input(102,9): anon4_LoopBody
input(108,13): anon5_Then
input(113,21): anon3

Boogie program verifier finished with 1
verified, 1 error

Listing 4. Output From Boogie verifier for Listing 1’s IR

VIII. E RRORPROCESSING

Error report generated by the Boogie verifier is processing
using Error Processor. Error Processor parses the output
string and gets the line number of errors and their messages.
We separate the errors into three different categories in
Error Recorder, such as verification errors, fatal errors, and
warnings. All errors and their traces form Boogie verifier are
inserted as verification errors in the Error Recorder. However,
they are always preprocessed before inserting them into Error
Recorder.

The line numbers of the Boogie code are mapped to line
numbers in HARPO code. The lines containing assertion
commands are linked to mapped to error messages that
will make sense to the HARPO programmer. For instance
error captured in listing 4 is marked online:129 and error
trace shows the root of error fromline:113 back to line:99.
Line:129 has assertstatement and associated message with
line number corresponding to HARPO code. Error Processor
select line number and verification error is feed into Error
Recorder. Therefore, after verification Error Recorder con-
tains verification error and its line number.

IX. CONCLUSION AND FUTURE WORK

The verification of theCounter class shown above illus-
trates some of the capabilities of the HARPO verifier to find
errors in concurrent code. We have tested the verifier on a
number of other examples, as well as carefully unit testing
each part of the system.

Future work will include automatically inferring certain
loop invariants so as to lessen the burden on the programmer
in annotating their code.

REFERENCES

[1] T.S. Norvell, “Language design for CGRA project. design 8.” [unpub-
lished draft], Memorial University of Newfoundland, 2013.

[2] T.S. Norvell, A.T. Md.Ashraful, L.Xiangwen, & Z. Dianyong, HAR-
PO/L:A language for hardware/software codesign. in Newfoundland
Electrical and Computer Engineering Conference (NECEC), 2008.

[3] T. S. Norvell, A grainless semantics for the HARPO/L language in
Canadian Electrical and Computer Engineering Conference, 2009.

[4] T. S. Norvell, “Annotations for Verification of HARPOL. Draft Version
0.” [unpublished draft], Memorial University of Newfoundland 2014.

[5] K.R.M. Leino, “This is Boogie 2” Microsoft Re-
search, Tech. Rep., 2008, draft. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=147643

[6] T. S. Norvell, “HARPO/L: Concurrent Software Verification with Ex-
plicit Transfer of Permission” in Newfoundland Electrical and Computer
Engineering Conference (NECEC), 2017.

[7] E. Dijkstra, “The humble programmer”, Communications of the ACM,
vol. 15, no. 10, pp. 859-866, 1972.

[8] O. Hasan and S. Tahar. (2015). “Formal Verification Methods”. In
M. Khosrow-Pour (Ed.), Encyclopedia of Information Science and
Technology, Third Edition (pp. 7162-7170). Hershey, PA: IGI Global.
doi:10.4018/978-1-4666-5888-2.ch705

[9] I. Ahmed, T.S. Norvell, R. Venkatesan, “Verifying the correctness of
HARPO Programs in Newfoundland Electrical and Computer Engineer-
ing Conference (NECEC), 2018.

[10] Y.G. Fatemeh, “Verification of the HARPO language Masters thesis,
Memorial University, 2014.

[11] M. Leonardo and B. Nikolaj “Z3: An Effecient SMT Solver. In: Tools
and Algorithms for the Construction and Analysis of Systems.” Ed. By
C. R. Ramakrishnan and R. Jakob. Vol. 4963. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin, Apr. 2008. Chap. 24, pp.
337-340. isbn: 978-3-540-78799-0. doi:10.1007/978-3-540-78800-3 24.

[12] I. Ahmed, T.S. Norvell, R. Venkatesan, A Review of Formal Program
Verification Tools based on Booogie Language in Newfoundland Elec-
trical and Computer Engineering Conference (NECEC), 2019.

[13] K.R.M. Leino and V. Wstholz, (2014). “The Dafny integrated develop-
ment environment.” arXiv preprint arXiv:1404.6602.

[14] K.R.M. Leino, P. Mller, and J. Smans, Verification of concurrent pro-
grams with Chalice, in Foundations of Security Analysis and Design V,
ser. LNCS, vol. 5705, 2009.

[15] B. John, “Checking interference with fractional permissions. In Radhia
Cousot, editor, Static Analysis” 10th International Symposium, SAS
2003, volume 2694 of Lecture Notes in Computer Science, pages 5572.
Springer, June 2003.

[16] Vertisoft XT: The Verisoft XT project. http://www.verisoftxt.de (2007)
[17] Y. Jean and C. Hawblitzel. ”Safe to the last instruction: automated

verification of a type-safe operating system.” ACM Sigplan Notices 45.6
(2010): 99-110.

[18] J. Chen, C. Hawblitzel, F. Perry, M. Emmi et al.“Type-preserving
compilation for large-scale optimizing object-oriented compilers.”
SIGPLAN Not., 43(6):183192, 2008. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/1379022.1375604.

[19] S. Chatterjee, S.K. Lahiri, S. Qadeer, et al. (2007) “A Reachability
Predicate for Analyzing Low-Level Software.” In: O. Grumberg, M.
Huth (eds) Tools and Algorithms for the Construction and Analysis of
Systems. TACAS 2007. Lecture Notes in Computer Science, vol 4424.
Springer, Berlin, Heidelberg

[20] B. Mike, K. Rustan M. Leino, and S. Wolfram. “The Spec# programming
system: An overview. In Construction and Analysis of Safe, Secure, and
Interoperable Smart devices (CASSIS)” volume 3362 of Lecture Notes
in Computer Science, pages 4960. Springer, 2004.

[21] J. Tschannen, C.A. Furia, M. Nordio, et al. (2011). “Verifying Eiffel
programs with Boogie.” arXiv preprint arXiv:1106.4700.

[22] C. Flanagan, K. R. M. Leino, M. Lillibridge et al. “Extended static
checking for Java.” In PLDI, pages 234245. ACM, 2002.

[23] I. T. Kassios. “The dynamic frames theory In: Formal Aspects of
Computing” 23 (3 2011), pp. 267-288. issn: 0934-5043. doi: 10 . 1007
/s00165-010-0152-5.

[24] W. Benjamin. “Deductive verification of object-oriented software: dy-
namic frames, dynamic logic and predicate abstraction”. PhD thesis.
Karlsruhe Institute of Technology, 2011.

